
Figure 5. Correlation of dilation constants 1/2(1) for some binary 
systems 

From Equations 28 and 29 we obtain 

where 'Yl(P) is given by Equation 18 and 'Y2(pr) by 

( ) h i pr 
V2

L 

'Y2 pr = exp - dP 
X2!pure 2(P') p RT 

(37) 

(38) 

(39) 

(40) 

It can be shown (5, 26) that for the case when both com­
ponents are subcritical and the excess Gibbs energy 
can be represented by Equation 37, or by Equation 26 
with ql = Vel' q2 = Ve,-i.e., 7] = Q-there exist rigorous 
relationships between the constants in the two conven­
tions, viz.: 

aU(!) = a12 (41) 

In H 2(t/P) = lnfpure 2(pr) + Vc,a12 (42) 

Dilated van Laar model for a multicomponent 
liquid mixture. Extension of the dilated van Laar 
model to the multicomponent case is best illustrated for a 

four-component system containing two solvents and two 
solutes. The results may then be generalized for a 
solution containing any number of solutes and solvents 
as shown elsewhere (26). 

We use the following notation: 

Components 1 and 2 Solvents (TRt ~ 0.93) 

Components 3 and 4 Solutes (TRt > 0.93) 

In the subsequent discussion of excess Gibbs energy we 
consider only the excess energy due to the interaction of 
solute molecules in the mixed solvent-Le., the excess 
Gibbs energy is taken relative to a solution infinitely 
dilute with respect to components 3 and 4 in the mixed 
solvent and does not include the excess Gibbs energy 
due to the nonideality of the solute-free solvent mixture. 

The reference fugacity of component 3 is Henry's 
constant for 3 in the mixed solvent; and similarly for 
component 4. The reference fugacity of component 1 
(or 2) is not the fugacity of the pure liquid, but is modi­
fied by the activity coefficient of component 1 (or 2) 
in the solute-free mixed solvent (see Equations 65 and 
66). 

According to our solution model, we write for the 
excess Gibbs energy due to interactions of solute mole­
cules in the mixed solvent: 

gE*(MS) 

RT(Xlql + X2q2 + xsqa + X4q4) 

- aSS(MS)<I>s2 - a«(MS) <1>42 - 2 aS4(MS)<I>s<l>4 (43) 

where 

qt = vet l1 + (7]S(MS)<I> s2 + 7]4(MS)<I>4
2 + 

2 7]34(MS)<I>S<I>4)] (i = 1, 2, 3, 4) (44) 

and subscript (MS) refers to mixed solvent. Here, 
aS3(MS) is the self-interaction constant of solute molecules 
3 in the environment of mixed solvent, and 7]3(MS) is the 
dilation constant of solute molecules 3 in the mixed 
solvent. By introducing as before (6) the assumptions 

aS4(MS) = VaSS(MS)a44(MS) (45) 

7]a4(MS) = V7]S(MS)7]4(MS) (46) 

Equation 43 can then be rearranged to read 

gE*(MS) / / = - (a33(MS)1 2<1>s + a44(MS)12<1>4)2 X 
RT 

[1 + (7]S(MS//
2

<1>s + 7]4(MS)1f2<1>4)2] (XIVe, + 
X2Ve, + XaVe, + X4Ve.) (47) 

The self-interaction constant of solute molecules in an 
environment of mixed solvent is assumed to be given by 
a linear average in the solute-free solvent mole fraction; 
results are not sensitive to this combination rule since, 
in most cases, the components in the mixed solvent are 
similar in their behavior toward the particular solute. 
Thus, 
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(48) 

and similarly, 

In (11~(;S)r2 = /~ (TS~S)*) (49) 

where 

T * - <I>lTS(t)* + <I>2T 3(2)* 

8 (MS) - <I>l + <I>2 (50) 

and/~ is given by Equation 36. The activity coefficients 
can be obtained by differentiating Equation 47. They 
are: 

In 'Yl(MS>,pr) = Ve, {<I>a2(1 + 3 <I>~2 + 2 DM1<I>~) -

2 AM1<I>a(1 + <I>~2)} (51) 

In 'Y2(MS) (pr) = ve,{<I>a2(1 + 3 <I>~2 + 2DM2<I>~)-
2 AM2<I>a(1 + <I>~2)} (52) 

In 'Ys* (MS) (p,,) = ve,{ <I>a2(1 + 3 <I>~2 - 2 11S(MS//2<I>~) 

2 a33(Ms/,2<I>a(1 + <I>~2)} (53) 

In 'Y'*(MS)(pr) = ve. {<I>a2(1+ 3 <I>~2 - 2 114 (MS) I/2<I>~) 

2 a44 (MS//2<I>a(1 + <I>~2)} (54) 

where 

AMI = 

<I>a = a33(MS)I/2<I>3 + a44(MS)1I2<I>, 

<I>" = 113 (MS)1I2<I>s + 114 (MS)1/2<I>, 

(a33(1)1/2 - aSS(MS)I/2)<I>s + (a44(1)1/2 - a44 (MS)I/2)<I>4 

<I>1 + <I>2 

(/ = 1,2) 

(55) 

(56) 

(57) 

(/ = 1, 2) (58) 

DS - *1/2 [()(11/11*)1/2] 
1 - 11j ()(T*/T) T* =T;(MS)* 

(60) 

The fugacity of each component is given by: 

(61) 

(62) 

(63) 

(64) 
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The reference fugacities /t(MS)oCP) and h(MS)O(r) in Equa­
tions 61 and 62 are given by (reference 26) : 

(65) 

h(MS)O(P,) = 'Y2(SF)(pr)/ pure 2(P") (66) 

where 'Yl(SF)(pr) and 'Y 2(~(pr) are the activity coefficients 
of components 1 and 2 in the solute-free (SF) mixed 
solvent, as given by: 

In 'Yl(SF) (pr) = Vela12~22 

In 'Y2 (SF)(pr) = ve,a12'1t1
2 

(67) 

(68) 

where al2 is the interaction constant of solvent molecules 
1 and 2, and 'It is the solute-free solvent volume frac­
tion, 

(69) 

As shown elsewhere (26), Henry'S constants H3(MS) (pr ) 

and H 4(MS ) (pr) are related to Henry'S constants in the pure 
solvents by 

In HS(MS ) (pr) = 'It 1 In H 3(1) (pr) + ~2 In H S(2) (pr) -

VClaI2~1~2 (70) 

In H 4(MS ) (pr) ~lln H 4(1) (pr) + 'lt21n H 4(2)(pr) -

v",a12'1t1W2 (71") 

Figure 6 presents calculated activity coefficients for 
the ternary system n-pentane(1)-propane(2)-methane­
(3) at 220 0 F ; only binary constants were used in these 
calculations. At 220 0 F, there are one solvent, n­

pentane, and two solutes, propane and methane. This 
case is the same as the one discussed previously (6). 
In this case the mixed-solvent reference state discussed 
above automatically reduces to the simple case of a 
single-reference solvent discussed before (6). 

C. Liquid-Phase Activity Coefficients: Effect of Pressure 

As indicated in the previous section, a useful thermo­
dynamic analysis of high-pressure vapor-liquid equilibria 
requires information on the effect of pressure on liquid­
phase fugacities; this information is given by partial 
molar volumes in the liquid mixture. 

At low or moderate pressures, liquid-phase activity 
coefficients are weakly dependent on pressure and, as 
a result, it has been customary to assume that, for prac­
tical purposes, activity coefficients depend only on tem­
perature and composition. In many cases this is a 
good assumption but for phase equilibria at high pres­
sures, especially for those near critical conditions, it can 
lead to serious error. 

When the standard-state fugacity is defined at a con­
stant pressure, for any component i, the pressure de-


