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Figure 5. Correlation of dilation constants meqy for some binary
systems

ol
= DD, 37
RT (qu T xzv,,) a19P1 P2 (37)

From Equations 28 and 29 we obtain
In v1®) = ,,019%5? (38)
In v2®) = ,009%,? (39)
where v17” is given by Equation 18 and v2‘®” by
PTGl

— dP 40
P RT (40)

P — f2

Y2 €xp
xzf pure Z(Pr)

It can be shown (5, 26) that for the case when both com-
ponents are subcritical and the excess Gibbs energy
can be represented by Equation 37, or by Equation 26
with ¢1 = v, g2 = v,,—i.e., n = 0—there exist rigorous
relationships between the constants in the two conven-
tions, viz.:

aze) = Q12 (41)
In Hyq)®) = In foure 27 + 0,002 42)

Dilated van Laar model for a multicomponent
liquid mixture. Extension of the dilated van Laar
model to the multicomponent case is best illustrated for a

four-component system containing two solvents and two
solutes. The results may then be generalized for a
solution containing any number of solutes and solvents
as shown elsewhere (26).

We use the following notation:

Solvents (Tg, < 0.93)
Solutes (T'z, > 0.93)

In the subsequent discussion of excess Gibbs energy we
consider only the excess energy due to the interaction of
solute molecules in the mixed solvent—i.e., the excess
Gibbs energy is taken relative to a solution infinitely
dilute with respect to components 3 and 4 in the mixed
solvent and does not include the excess Gibbs energy
due to the nonideality of the solute-free solvent mixture.

The reference fugacity of component 3 is Henry’s
constant for 3 in the mixed solvent; and similarly for
component 4. The reference fugacity of component 1
(or 2) is not the fugacity of the pure liquid, but is modi-
fied by the activity coefficient of component 1 (or 2)
in the solute-free mixed solvent (see Equations 65 and
66).

According to our solution model, we write for the
excess Gibbs energy due to interactions of solute mole-
cules in the mixed solvent:

Components 1 and 2
Components 3 and 4

&5 ms)
RT(x1q1 + %292 + x3g3 + x4q4)
— a3 P’ — auas) P — 2 asausy PPy (43)

where

g1 = e[l + (msusy®s® + neeusy®® +
2 s @3®)] (G =1,2,3,4) (44)

and subscript (MS) refers to mixed solvent. Here,
assms) 18 the self-interaction constant of solute molecules
3 in the environment of mixed solvent, and 73qys) is the
dilation constant of solute molecules 3 in the mixed
solvent. By introducing as before (6) the assumptions

A34Ms) = \/‘m “5)
N34M8) = \/m(m)m(um ey
Equation 43 can then be rearranged to read
E%
gR(;S) = —(esms?®; + auwms)*®q)? X

1 + () ?®s + nacus)2®4)?] (10, +
X90e, + x30,, + xa.,) (47)

The self-interaction constant of solute molecules in an
environment of mixed solvent is assumed to be given by
a linear average in the solute-free solvent mole fraction;
results are not sensitive to this combination rule since,
in most cases, the components in the mixed solvent are
similar in their behavior toward the particular solute.
Thus,
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W Prazs)/? + Baags)/?
®; + @

‘Q33(M8)

and similarly,
1/2 +
n (ﬂa(nm) =1 (Ta(u) ) (49)

ngF T

&1 T30y" + B2 T300)F
@, + @,
and f,, is given by Equation 36. The activity coefficients

can be obtained by differentiating Equation 47. They
are:

In 'YI(MS)(P')

Tyus* = (50)

2,{2.2(1 + 382 + 2 DM:®,) —
2 AM3,(1 + 22} (51)
In v2uy®? = 2,{®2(1 + 3 8,2 + 2 DM13,) —
2 AM®,(1 + 39} (52)
28201 + 3 B2 — 2 naus?d,) —
2 asus)?®,(1 + 2,2} (53)
In ve* s ®” = 0,{22(1 + 3 & — 2 mus)*®,) —
2 aums*®(1 + 2,9} (54)

In 78*(118)(?')

where
P, = amms®: + auos/*®s (55)
®, = nsus)*®s + nius)2Ps (56)
AM, =
2 — aaue))®s + (s — asaonsy’?) s (57)
B, + B

(asa(z)1

(=12
DM; = ®DN3q + PDNyg (¢ =1,2) (58)

DN, = DS; Time* — Tin*
T 0@/ + ®2/0.)

O(n/n*)M2
DS, = 2 [_—]
e ’,’ a(T‘EF/T‘) T*-Ti(us)*

The fugacity of each component is given by:

» (7= 3,4) (59)

(60)

P 5L
2L ap (61)

P = (P") 0P
;1 Yius)" ‘X1f1ms) e€xp
f o™ of T

P & L
F2® = yaus) F%af2us) " exp fp, %,fp (62)

L
® = *(P7) () B ap (63
f3 Ysus) T F xsHyms)F exp fp' RT ] (63)

P & L
F1® = yius* P OxHius) " exp f = (64)
P*RT
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The reference fugacities fius)’"” and fous)°®" in Equa-
tions 61 and 62 are given by (reference 26) :

frus’®? = Y165 F foure 177 (65)
F2008°F? = 72w F” fpure 2F (66)

where y1sm® and vz ®" are the activity coefficients
of components 1 and 2 in the solute-free (SF) mixed
solvent, as given by:

In y1em®? = 0,015 67)
In y2m® = v,00271 (68)

where a;, is the interaction constant of solvent molecules
1 and 2, and ¥ is the solute-free solvent volume frac-
tion,

‘I’]_—L \P,:L
By + P

TN
As shown elsewhere (26), Henry’s constants I-J;mg)(r )
and Hag)®" are related to Henry’s constants in the pure
solvents by

In Hyasy®" = ¥1In Hyy®) + ¥ In Hyo)®) —
v,012¥1¥2  (70)
- -~

In Hyus)™? = ¥1ln Hyy®” + ¥pIn Hypy®) —
0,_..(!13‘1'1\1’2 (71)

(69)

Figure 6 presents calculated activity coefficients for
the ternary system n-pentane(l)-propane(2)-methane-
(3) at 220° F; only binary constants were used in these
calculations. At 220° F, there are one solvent, n-
pentane, and two solutes, propane and methane. This
case is the same as the one discussed previously (6).
In this case the mixed-solvent reference state discussed
above automatically reduces to the simple case of a
single-reference solvent discussed before (6).

C. Liquid-Phase Activity Coefficients: Effect of Pressure

As indicated in the previous section, a useful thermo-
dynamic analysis of high-pressure vapor-liquid equilibria
requires information on the effect of pressure on liquid-
phase fugacities; this information is given by partial
molar volumes in the liquid mixture.

At low or moderate pressures, liquid-phase activity
coefficients are weakly dependent on pressure and, as
a result, it has been customary to assume that, for prac-
tical purposes, activity coefficients depend only on tem-
perature and composition. In many cases this is a
good assumption but for phase equilibria at high pres-
sures, especially for those near critical conditions, it can
lead to serious error.

When the standard-state fugacity is defined at a con-
stant pressure, for any component z, the pressure de-




